RSS Feed

Embedded Systems Blog

Open Meetings and Papers at the international CAN Conference

May 31st, 2021 Comments off

The 17th international CAN Conference is an online event about the Controller Area Network happening from June 14th to June 17th, 2021. Papers presented cover topics such as updates on the physical and data link layer for CAN FD and XL, CANopen testing, CANopen FD and Security.

The tutors of EmSA participate in presenting two papers: “A simplified classic CANopen to CANopen FD migration path using smart bridges” and “Achieving multi-level CAN (FD) security by complementing available technologies”.

PCAN-Router-FD
Smart Bridges based on PCAN-Router FD

The paper about smart bridges introduces a solution to easily combine classical CANopen devices with CANopen FD devices. The bridges developed here offer one classical CANopen and one CANopen FD port and “auto-translate” CANopen and CANopen FD messages transparently. As an example, SDO transfers on the classical CANopen side are automatically translated to USDO transfers on the CANopen FD side.

The paper about security reviews currently available security solutions for CAN (FD) and examines how they complement each other. The security methods combine here are CAN message ID guarding, a CAN crypto layer and (D)TLS.

For the first time, the iCC combines papers with open CiA IG and SiG (Interest Group and Special interest Group) meetings. Here “open” means that after registration anyone can participate to see how the different work groups operate. Our engineers will participate in the SIG special car add-on devices (CiA 447) and the IG CANopen FD.

For more details and registration, see www.can-cia.org/icc

Categories: CAN, CANopen, Security Tags: , , ,

Industrial CANopen (FD) I/O by PEAK

August 26th, 2020 Comments off

A few months back, EmSA’s CANopen and CANopen FD libraries and protocol stacks were integrated into NXP’s MCUXpresso SDK supporting multiple NXP microcontroller families, inlcuding the LPC54xxx family. That MCU family was chosen by PEAK Systemtechnik for a number of industrial input and output devices.

The newly released PCAN-MicroMod FD DR CANopen Digital 1 is the first of their industrial I/O device integrating both CANopen and CANopen FD within the same firmware. All essential settings of the DIN-Rail mountable device are made with turn dials: selection of CANopen or CANopen FD modes, bitrates and node id used.

Typical use cases include future proofing CANopen systems by already choosing CANopen FD capable devices and quickly adding generic I/O devices(s) to custom, embedded CANopen FD networks.

The device passed the official CiA CANopen conformance test. The CANopen FD test is pending.

For more information, see the PEAK product page.

Upcoming NXP / EmSA / CANopen (FD) Webinar and Videos

April 16th, 2020 Comments off

NXP and EmSA are inviting you to the one hour seminar “Accelerate Development of Robust Network Communications with CANopen and CANopen FD” on Tuesday April 21st 2020. This webinar is a hands-on session about customized CANopen (FD) development on NXP MCUs.

In the hands-on part, we take the CANopen (FD) device/slave example included with the NXP MCUXpresso SDK and use the free CANopen Architect Mini software utility to modify and configure the CANopen (FD) communication of the device. Code modifications are made using the MCUXpresso SDK to support the custom generated CANopen (FD) object dictionary entries. Click here to register for this webinar.

The webinar requires some basic CANopen (FD) and MCUXpresso knowledge. See our courses at www.em-sa.com/video to learn the basics about these technologies.

Press Release: Free Micro CANopen Libraries for NXP Microcontrollers

February 24th, 2020 Comments off

February 24, 2020 – Embedded Systems Academy (EmSA) and NXP® Semiconductors announce the integration of the free-to-use EmSA Micro CANopen libraries into the NXP MCUXpresso Software Development Kit (SDK) for developing with NXP’s microcontrollers (MCU) and crossovers based on Arm® Cortex®-M.

For years, many MCUs have been equipped with the Controller Area Network (CAN) interfaces including CAN FD. These interfaces are optimized for embedded communication and make it easy to transmit and receive single messages.

“To take full advantage of the capabilities of such interfaces, middleware communication protocols are required,” says Olaf Pfeiffer, General Manager of EmSA. “One of the most
popular protocols for embedded CAN applications is CANopen, for which EmSA has delivered its Micro CANopen software for more than 20 years, and remains highly used among embedded developers.”

Free-to-use versions of EmSA’s Micro CANopen library are now fully integrated into the MCUXpresso SDK for a selection of NXP LPC MCUs and i.MX RT crossover MCUs.

“This integration further simplifies the process of prototyping and integrating sophisticated and reliable communication into embedded systems.” said Brendon Slade, director of MCU ecosystem for Edge Processing at NXP Semiconductors. “For most systems, the libraries can be used in production without further licensing.”

One of the first adopters is PEAK-System Technik: Their industrial I/O module PCAN-MicroMod FD is based on NXP’s LPC54000 MCU series and uses a variation o

f EmSA’s Micro CANopen libraries. “Using a proven CANopen (FD) protocol implementation for our I/O devices greatly reduced our development time and opens up additional use-cases for our customers.”, says Uwe Wilhelm, General Manager of PEAK-System Technik.

For more information about the NXP microcontrollers currently supported by EmSA’s free to use CANopen libraries and video tutorials, visit www.em-sa.com/nxp

About MCUXpresso SDK
Available in downloads based on user selections of MCU, evaluation board and optional software components, the MCUXpresso SDK merges customization and quality in a suite of production-grade runtime software. Complete with pre-integrated RTOS middleware, stacks and middleware, reference software, and MISRA-compliant drivers analyzed with Coverity® static analysis tools, it’s the ultimate software framework and reference solution for application development with NXP MCUs and crossover MCUs based on ARM® Cortex®-M cores.

About Embedded Systems Academy
Embedded Systems Academy (EmSA) is an NXP gold partner and has locations in Barsinghausen, Germany and San Jose, California. EmSA provides tools, training and services for planning, implementing, debugging, commissioning and testing of embedded networking technologies including CAN, CAN FD, CANopen, CANopen FD, CiA447, J1939 and others. EmSA’s tutors Olaf Pfeiffer, Christian Keydel and Andrew Ayre published two books about CAN, CANopen and security on CAN systems. They regularly publish related articles and papers for various international conferences.

Contact
Embedded Systems Academy GmbH
Olaf Pfeiffer
info@esacademy.de

Training and event paper presentation videos online

February 13th, 2020 Comments off

Over the last years we published more than 50 articles, papers, books, webinars and we also continuously updated our training materials. However, some of the training material and especially scientific papers only reach a small percentage of the embedded community. Therefore we decided to publish more free educational videos to reach more of you. As a start we created several playlists on our EmSA Youtube channel. These include:

  • CANopen FD Intro:
    Introductory videos to CANopen FD, also covering some basics like an introduction to the CANopen Object Dictionary concept
  • CAN (FD) Security:
    Video collection about CAN and CAN FD security challenges and solutions
  • MCUXpresso Middleware:
    Video collection about NXP’s MCUXpresso and CANopen libraries included

We plan to publish more videos in the upcoming month, further focusing on CAN, CAN FD, CANopen, CANopen FD topics including introductory videos as well as in-depth technology classes.

Please subscribe to the channel to stay informed about new videos published.

See you at the upcoming shows and conferences: #EW2020 and #iCC2020

January 16th, 2020 Comments off

This year we present multiple papers at the upcoming Embedded World (25th to 27th of February in Nuremberg, Germany) and the international CAN Conference (17th to 18th March in Baden-Baden, Germany). Chris and I will be talking with our partners of NXP Semiconductors, PEAK

-Systemtechnik and the Hochschule Offenburg about CAN (FD) security and CANopen (FD) Smart Bridging. In our security papers, we examine how different existing and CAN capable security methods can best complement each other. With SmartBridgingFD we show how classical CANopen devices or networks can easily and transparently be mixed with newer CANopen FD installations. As classical CANopen and CANopen FD are not compatible on the bitrate level, they can not share the same CAN wiring. However, the SmartBridgeFD allows combining classical CANopen and new CANopen FD networks into one large logical network.


At the Embedded World, you can see the SmartBridgeFD integrated into the CANopen FD demonstrator at the CiA booth (hall 1 booth 630). Another of our CANopen (FD) demos will be displayed at NXP Semiconductors (hall 4A booth 220), as our CANopen software is now part of NXP’s latest SDK. Our CAN hardware partner PEAK Systemtechnik is in hall 1 (booth 483).

The Embedded World conference program is now online, we are in Session 2.1. The program for the international CAN Conference is here, our papers are in Session IV and VII.

CAN (FD) / CANopen (FD) security specification updates

September 16th, 2019 Comments off

Our authors Christian Keydel and Olaf Pfeiffer published an article in the current CAN newsletter, summarizing the current status of CAN security specifications.

Please follow the link above for more details.

Excerpt:

End of June 2019, the CiA association hold a phone conference for safety and security issues. Holger Zeltwanger gave the participants an update regarding “base documents”. When defining security solutions for Classical CAN, CAN FD, or CAN XL systems, it would be preferable to not start from scratch defining security basics for embedded systems or embedded communication systems. Unfortunately, the current draft of ISO 21434 “Road Vehicles – Cybersecurity engineering” does not seem to be suitable, as it is very generic and not yet completed. It is more of a guideline what designers and developers need to keep in mind when designing a “secured” vehicle.

Another document suggested is the “Baseline Security Recommendations for IoT” by the European Union Agency for Cybersecurity. Until the next meeting, CiA will review and report, if that document is suitable to be referred to also by CiA documents. CAN XL is still in an early specification phase and the related special interest group, recognizing the possibility for security features in hardware to be part of future CAN XL controllers, therefore suggested adding security features to CAN XL first. One of the discussed options is a blacklist/whitelist scheme like the one implemented by the NXP secure CAN transceiver family. Such a scheme can eliminate several potential attack vectors at once if all participants in a CAN (XL) network actively support it. Once we see which security features made it into the CAN XL specification (and hardware), we can review if any of these can still be applied to CAN FD, too, for example on the transceiver level.

However, potential CAN controller specific hardware security features will most likely not be suitable to migrate back into CAN FD, so protocol based security solutions are still required.

 

CANopen Magic 10 Released

June 17th, 2019 Comments off

EmSA is pleased to announce the release of version 10 of CANopen Magic. This version adds some exciting new features.

  • Initial support for CiA-454 EnergyBus, including high-level message interpretation
  • Simplified read and write windows with easy switching to advanced versions
  • J1939 trace interpretation script
  • User interface improvements

Users on a maintenance contract can obtain the new release as usual. To try out CANopen Magic with a fully-operational trial visit http://www.canopenmagic.com.

PEAK and EmSA extend partnership on CANopen (FD) and J1939 solutions

June 12th, 2019 Comments off

Darmstadt and Hannover, June 12th, 2019. PEAK-System Technik GmbH (www.peak-system.com) and Embedded Systems Academy GmbH (www.esacademy.de) have deepened their partnership to provide common CANopen, CANopen FD, and J1939 solutions. For more than 15 years, Embedded Systems Academy GmbH (EmSA) has offered numerous CANopen software products including monitors, analyzers, simulators, configurators, and protocol stacks for the CAN (Controller Area Network) hardware of PEAK-System Technik GmbH (PEAK). Building on that partnership, PEAK has now become a shareholder and partner of EmSA.

“By formally joining the PEAK Group of companies, we can now more easily share resources and are better positioned to streamline development processes that involve both CAN hardware and software,” says Olaf Pfeiffer, General Manager of Embedded Systems Academy GmbH.
Current projects of PEAK and EmSA include CANopen (FD) generic input and output devices, CANopen (FD) protocol libraries, security options for CAN and diagnostics and test systems for CANopen (FD) and J1939.

“The deepened partnership with EmSA will provide our hardware customers with a variety of easy-to-use software products for CANopen, CANopen FD, and J1939 applications,” says Uwe Wilhelm, General Manager of PEAK-System Technik GmbH. “We’ll announce our new joint CANopen and CANopen FD solutions on our websites and blogs over the coming months.”

CANgineBerry software and firmware updates

May 6th, 2019 Comments off

The CANgineBerry (www.cangineberry.com) is a smart coprocessor module for the Raspberry Pi®, other popular embedded microprocessor systems or a PC. It allows offloading CANopen tasks from the main system while communicating with it though a regular serial port which greatly simplifies application development. Firmware for different purposes can be programmed through the same interface. New releases for the CANopen Device and Manager application firmware are now further enhancing the functionality of the CANgineBerry.

The CANopenIA-BEDS (V1.5) firmware for CANopen devices now also supports the tunneling of plain-CAN messages for special cases where CANopen is not used or the network needs custom messages. It also adds CANcrypt to support secure and authenticated CANopen communication between up to 15 participants. Lastly, it now supports an advanced manual triggering for Transmit Process Data Objects (TPDOs) where the host application can decide when exactly to trigger the transmission of a TPDO in addition to the standard fully-automatic mode, .

The CANopenIA-MGR (V1.7) firmware implements a self-configuring CANopen controller/manager. It contiuously monitors the network for new CANopen nodes and scans their configuration in order to set up automatic PDO handling. Also here, the new version implements advanced manual triggering options for TPDOs. For example, when the application wants to write data to a remote CANopen node’s Object Dictionary (OD) entry, the default behavior is that the controller automatically decides which transport — PDO or Service Data Object (SDO) — to use, depending on whether that OD entry is part of a PDO or not. In some cases, more control is desirable, though, so now the application can disable the automatic handling and manually select SDO vs. PDO as well as manually trigger TPDO transmissions.

The latest CANgineBerry software and firmware is available here: [CANgineBerry.com]

The CANgineBerry is available here: [US] [UK] [EU] [DE]